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ABSTRACT

We derive a new nonlocal model for turbulent convection which incorporates recent advances from labor-
atory, planetary, and numerical simulation of turbulence, and we show how previous prototypic models can
be recovered. The new model is given by five coupled differential equations, equations (81)~(84) and (100), that
yield: convective flux, temperature variance, turbulent kinetic energy in the z-direction, total turbulent kinetic
energy, and (rate of) dissipation of kinetic energy. The solution of these five equations yields all the turbulent
quantities as a function of the temperature gradient. The latter is then obtained by solving the flux conserva-
tion law, equation (96), which we derive anew to account for the kinetic energy flux. The main features of the
new model are as follows.

1. Nonlocality—This basic feature is represented by the third-order moments that enter the governing
equations (81)—(84) and (100). In all nonlocal models thus far, these moments were treated with the diffusion
approximation. Since the latter yields incorrect results in the case of the convective boundary layer, we avoid
it. We derive the dynamic equations for all the third-order moments and solve them analytically.

2. Gravity waves, stable stratification.—The fundamental feature of the overshooting (OV) region is that the
flow is stably stratified, V — V,4 < 0. Under such circumstances, the Kolmogorov spectrum is no longer valid
since eddies, working against gravity, lose a fraction of their kinetic energy which goes to generate “gravity
waves.” To fully account for the appearance of a “buoyancy subrange” E(k) ~ k™2 in licu of the Kolmogorov
spectrum ~k~ >3, we adopt a recent model for stably stratified turbulence which has been successfully tested
against convective boundary layer data.

3. Dissipation e—The process of dissipation of turbulent kinetic energy has been neglected for many years,
but is now viewed as crucial for a proper quantification of OV. The assumption € = 0 not only violates the
energy conservation law, but overestimates the extent of the OV region. When € is included, it is generally
computed locally with a mixing length /. If the description of [ is difficult in the main convective region, it is
all the more so in the OV region where the concept of a mixing length loses its physical content. We avoid
the use of a mixing length in both the convective and the OV region by introducing a differential equation for
the dissipation €, equation (100), which, being nonlocal, accounts for the fact that turbulent kinetic energy
created at one point in the flow may be dissipated somewhere else, in accordance with the nonlocal nature of
turbulent convection.

4. Pressure forces, anisotropy.—The stably stratified turbulence found in the OV region is experimentally
known to be highly anisotropic since negative buoyancy suppresses the eddy vertical motion. Thus, pressure-
velocity and pressure-temperature correlations, which help restore isotropy, play a crucial role.

5. The Boussinesq Approximation is avoided.

6. The turbulent kinetic energy flux—A new flux conservation law, equation (96), is derived which includes
the turbulent kinetic energy flux recently found to be up to 50% of the total flux for Sun-like stars.

7. A new hydrostatic equilibrium equation, equation (103), is derived which, in addition to a turbulent pres-
sure, also includes buoyancy effects.

The next step is to couple the new model to a stellar structure code.

Subject headings: convection — stars: interiors — turbulence

1. INTRODUCTION

By its own nature, convective turbulence is a highly nonlocal phenomenon. By contrast, another common type of turbulent flow,
shear-generated turbulence, is considerably more local in nature due to the work required by the eddies in working against gravity.
The mixing length theory (MLT, Kippenhahn & Weigert 1991), which thus far has been the most widely used model, is by
construction a local model and thus cannot be considered a satisfactory theory. Over the years, there has been a succession of
models that endeavored to treat convection as a nonlocal phenomenon (for a recent discussion, see Unno, Kondo, & Xiong 1985).
Some models used as a starting point the local MLT formalism (Shaviv & Salpeter 1973). Other models account for nonlocality by
adding to the MLT formalism a differential equation for one turbulent variable, usually taken to be the turbulent kinetic energy in
the z-direction (Shaviv & Chitre 1968; Bressan, Bertelli, & Chiosi 1981; Kuhfuss 1986; Umezu 1992). A substantial improvement
occurred with the advent of the work of Xiong (1985a, b, 1986) who suggested three differential equations for w?, 8%, and w8 (w and 9
are the velocity and temperature fluctuations). Nonlocality, represented by the third-order moments, was treated with the diffusion
approximation, the dissipation € was treated locally with the introduction of a mixing length [ = ¢, H ,, and turbulence was assumed
to be isotropic. Canuto (1992), using the Reynolds stress method, went one step further and suggested four differential equations for
g%, w?, 8%, and wo (1q* is the turbulent kinetic energy) since he considered the more general case of anisotropic flow (stably stratified
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turbulence is known to be highly anisotropic). However, the major difference with Xiong’s model is that the crucial third-order
moments are no longer treated with the diffusion approximation since the latter yields incorrect results for the convective planetary
boundary layer. Rather, Canuto (1992) derived the full dynamic equations for the third-order moments.

At this point in the development of a nonlocal theory of convection, it would not seem advisable to employ models less complete
than the last two, especially in the light of the demonstrably improved results that this type of models provides (Unno et al. 1985;
Unno & Kondo 1989).

In spite of their completeness with respect to past models, neither Xiong nor Canuto’s models represent as yet the most complete
description of nonlocal convection. By revisiting the problem, we have found several physical processes the treatment of which must
and can be improved using recent advances in turbulence modeling derived from other fields. Below, we discuss these processes in
quantitative terms trying to bring to light their physical content so that a reader can skip the mathematical derivations and go
directly to the new equations, equations (81)—(84), (96), and (100).

1.1. Nonlocality

In a nonlocal treatment of convection, nonlocality is represented by the third-order moments, wg?, 8*w, w>, and fw? that enter the
equations for the second-order moments g2, 8%, w?, and 6w, as well as the equation for the dissipation €. Physically, the third-order
moments represents the “fluxes” of the second-order moments. It has been common practice thus far to use a molecular analogy,
1.e., a “diffusion approximation” whereby each flux is assumed to take place along the gradient of the variable to be diffused, that is

— 0 — — — — — — —

wq2=—v,5q , Pw=—v,— 6%, wl = —y, — w?, 0w2=—v,&w6, 0

'z 0z
where v, ~ wl (Stellingwerf 1982, eq. [27]; Kuhfuss 1986, eq. [ 36]; Xiong 1985b, Appendix).
Recent studies (Finger & Schmidt 1986; Paper I; Canuto et al. 1993) have however shown that equations (1) are severely
incomplete since each third-order moment must depend on all second-order moments; in addition, the turbulent viscosity v, must be
replaced by an effective v¢' that includes the convective flux itself. To obtain the complete expressions, we have constructed the
dynamic equations governing the third-order moments and solved them analytically, equations (71)—(76). The solution shows that
each third-order moment is a linear combination of the gradients of all the second-order moments,

(w3, w20, wh?, 03, wg?, g°0)= — A g w2 —B g wd—C g ) g q, 2
0z 0z 0z 0z
where A, ..., D play the role of a turbulent viscosity (or diffusivity).

One may have suspected that the diffusion approximation (1) was not correct since only the large, energy-containing eddies are
diffusive in nature whereas smaller eddies are predominantly dissipative. The unreliability of (1) to describe the (downward) flux of
turbulent kinetic energy has also emerged as one of the main results of numerical simulations of turbulent convection (Chan & Sofia
1989). Furthermore, in the diffusion approximation (1), each turbulent diffusivity 4, ..., D is assumed to be only a mechanical
turbulent viscosity, i.e., a velocity times a mixing length,

A ..., Dx=v,xwl, (3a)
while the new solution shows that 4, ..., D are also contributed by buoyancy itself, that is
A ...,D~ v =ay, + bwh , (3b)

where the a and b depend on the specific third-order moment (Appendix B). The effect of the convective flux in equation (3b) is as
follows (Fig. 1): in the main convective region where wl > 0, this term increases the turbulent viscosity, whereas in the overshoot
region where w8 < 0, the new term leads to a lower effective turbulent viscosity. Stated differently, in the convective region
(V — V,4 > 0), the standard expression v = v, underestimates the true turbulent viscosity, whereas in the overshooting region

(V — V4 < 0), it overestimates it. The third-order moments are given by equations (71)—(76).

2.2. Dissipation

In turbulence modeling, a most critical quantity is €, the rate of dissipation of turbulent kinetic energy (Batchelor 1971). Since
there have been some misunderstandings on the physical meaning and the value of €, it may be useful to discuss some of the issues.
Many models have used € = 0, which results in a violation of the energy conservation besides leading to an overestimation of the
overshooting region. Recent models (e.g., Umezu 1992) have emphasized the need to include € but compute it locally.

CONVECTIVE REGION OVERSHOOTING REGION
;0 >0 wi<0

V-V,4>0 V- va.d <0

#ow who @

FiG. 1.—A convective regime is characterized by a positive convective flux, a temperature gradient larger than the adiabatic value, and by the physical
transformation of temperature fluctuations into velocity fluctuations. The overshooting region is characterized by a regime where velocity fluctuations feed
temperature fluctuations or equivalently, gravity waves.
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In deriving the equation for #;u; from the Navier-Stokes equations, we have two terms that depend on the molecular viscosity v:
the first term vanishes as v — 0, while the second term (=€) does not vanish even when v — 0. This is because € is the product of v
times the mean-square vorticity which diverges as v — 0, yielding a finite €. This can be seen as follows. The two terms are

2%u; %u; o ou; \( Ou; ? __
v<u,~a—x£+u,~ Kf)zvﬁui“"_h(a_x,)(a_x,ﬁ:Va_>c,f“"""_€"’" (4a)

where the tensor ¢;;is defined as
Ou; \( Ou;
s=22 = =). (4b)
“ 2v<axk><axk>

As v — 0, the first term in the last expression (4a) vanishes, while €;; does not vanish since as v decreases, the mean-square vorticity
~(0u;/0x;)* increases so that the product (4b) remains finite. It has been customary for many years to assume that ¢, ; is diagonal since
the scales involved in the dissipation process are sufficiently small to be considered isotropic. Recently, this assumption has been
found to be incorrect both experimentally and through large eddy simulation techniques (Feiereisen et al. 1982; Browne, Antonia, &
Shah 1987). Thus, we employ a more general model of the form (b;; represents the degree of anisotropy, see eq. [12c])

2 b;;
€; =73 65,']' + (1 - F1/2)€ = N (4C)
3 e
where F is zero for two-dimensional turbulence and F'/? ~ 0.8 for shear turbulence (the definition of F is given in Appendix A,
Eq.[A107]).
Let us now consider how taking € = 0 violates global energy conservation. This can be seen as follows. Consider the equation for
the turbulent kinetic energy, equation (35e, Paper I) or equation (41) below

01— 0 (15— — —
6t2q +az<2qw+pw>—gtxw0—e. (5a)

The first term on the right-hand side represents the source or production by buoyancy (P = gaw#), while € represents dissipation.
Equation (5a) can thus be written as

Time evolution + Diffusion = Source — Sink . (5b)

Taking a volume average (denoted by a bar) and a stationary case, one obtains a relation stating that production equals dissipation,
namely

P=c¢. (5¢)
Thus, taking € = 0 violates energy conservation since € represents the sink of energy available to the system (Marcus 1982). It is
important to stress that it is the only sink since the nonlinear interactions conserve energy, and thus the energy input at the largest
scales arrives unaltered at the smaller scales where it is dissipated into heat by the only processes operating at those scales, i.e.,
molecular processes.

Numerical simulations of turbulent convection have further clarified the role of €. Figure 19 of Chan & Sofia (1989) shows that € is
of the same order as the buoyancy work, but that it exceeds it near the upper and lower boundaries of the convective zone so as to
satisfy the integral relation (5¢). See Figure 2.

In § 13 we discuss models that take € = 0 (Roxburgh 1978, 1989; Bressan et al. 1981; Bertelli et al. 1986; Zahn 1991) as well as
models that include € but compute it locally (Shaviv & Chitre 1968; Antia and Chitre 1993 ; Kuhfuss 1986; Umezu 1992; and Xiong
1986). The local parameterization employed by Maeder (1975) and Doom (1985) is also discussed in § 13.

2 T T T T
€
ga wd
| - -
o._ -
_I._ -
-2 1 i 1 i
[6] 2 4 [ 8 o]

An P

F16. 2—The ratio of the local values of the rate of dissipation of kinetic energy (=€) to production (P = gaﬁ), as from a large eddy simulation of turbulent
convection in a solar-like star (K. L. Chan, private communication, 1992).
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Finally, we show that € does not depend on v and that €, (the rate of dissipation of temperature variance) does not depend on x
(the thermometric conductivity). Consider the definitions of the turbulent kinetic energy e and of the temperature variance 62

e= J wE(k)dk, 62 = f mG(k)dk, (6)
'/l n/l

where [ is the size of the largest eddy and E(k) and G(k) are spectral functions for the velocity and temperature variances, respectively.
In the case of unstably stratified turbulent convection,

(2
0z 0z
the eddies are described by Kolmogorov inertial spectra (Ko = 1.6 + 0.02 and Ba = 1.34 + 0.02 are the Kolmogorov and Batchelor
constants, Andreas 1987; Monin & Yaglom 1971, 1975)

E(k) = Ko €23k =33 | G(k) = Ba gy 13k 53 (8)

Combining equations (8) and (6), one derives

><0 or V—-V,>0, @]
ad

o I 7
e=l—£, €9=‘2‘C6€?, (9a)
where I, = Ic; ! and
2 \¥ 1 Ko
c, = ﬂ(g Ko 1> s 5 Cg = C, B—a . (9b)

Equations (9) show that € and ¢, do not depend on v and x. Viscosity enters only in the expression for the scale I, at which
dissipation occurs. In fact, consider the Fourier transform of equation (4b),

€=2v J K2E(K)dk , (10a)

and use equation (8). Integrating between 0 and k,; ~ I !, we obtain
Iy = (e )~ ¥4 (10b)

which states that for a given energy input P, the dissipation of that energy occurs at scales [, that become progressively smaller as the
viscosity of the system decreases. Thus, a low-viscosity system like a star (Massaguer 1990) does not imply that € is zero, but rather
that dissipation occurs at scales considerably smaller than in a more viscous system.

In summary, the value of € is determined by the large scales while the length scales at which € is dissipated is determined by the
viscosity v.

We shall propose both a local and a nonlocal model to compute €, § 11.

1.3. The Effect of Pressure Anisotropy

Like other physical variables, pressure can be decomposed into two components: an ensemble average part and a fluctuating
(turbulent) part. In astrophysical convection, pressure fluctuations are usually neglected except for the occasional addition of a
turbulent pressure in the hydrostatic equilibrium equation (see § 12). However, in the context of OV, turbulent pressure is perhaps
the least important of all the pressure-induced contributions. The distinguishing feature of OV is the appearance of a negative
convective flux. Since negative buoyancy greatly suppresses the vertical motion of the eddies, the OV region exhibits a degree of
anisotropy larger than the main convective region. Since pressure forces in the Navier-Stokes equations specifically deal with
anisotropy, they must be fully accounted for in any treatment of OV. (We may add that in the strongly convective planetary
boundary layer [Holtslag & Moeng 1991, Fig. 17, the pressure-temperature correlations are found to be even larger than the
third-order moment #w* which is an integral part of the nonlocal character of convection.)

Turbulence modeling over four decades has demonstrated that it is very difficult to account for pressure fluctuations. Work in this
field began 40 yr ago with a classic paper by Rotta (1951) and continues to date (Shih & Lumley 1984; Shih and Shabbir 1992;
Speziale 1991; Speziale, Gatski, & Sarkar 1992; Taulbee 1992). The essence of the problem can be stated as follows. The Reynolds
splitting of the Navier-Stokes equations leads to the following equation for the fluctuating velocity u; (equation [25])

B u; + u; 8%, U= — g—i + buoyancy + stresses . (11)
The question then arises as how to treat the pressure term. We shall discuss four points:
First, consider the equation for the Reynolds stress w;u;. Pressure forces contribute the pressure-strain tensor

=y o > ‘ (12a)
Ox;

which must be modeled. We shall discuss such a tensorin § 5.
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In the case of the kinetic energy, the modeling of equation (12a) is simpler since one needs only the trace

0

M, = — pi; - (12b)

i gx—lp

In the case of homogeneous turbulence, IT; = 0. In a inhomogeneous case, I1; is not zero but it can be absorbed in the already
existing third-order moment originating from the nonlinear term in equation (11); see equations (84) and (47). This applies to a set of
models discussed in § 13.

Second, consider the equation for w?, where w is the velocity in the z-direction. In this case, the effect of pressure cannot be
accounted for by the above renormalization alone. This is because pressure forces tend to isotropize the energy among the different
components of the kinetic energy u?, v2, and w?. Thus, one expects I1;; to contribute a term that reduces the anisotropy in direct
proportion to the degree of anisotropy itself. If one characterizes the degree of anisotropy by the tensor,

by =uu; — %ed,; . (12¢)
Rotta (1951) first suggested that
;= 'by, (12d)
where 7 is a time scale to be defined later. Thus we expect that the pressure-velocity correlation contributes terms like
00— 00— — 1=
aw2+aw3=——r'l<w2—§q2>+~'. (12¢)

The “return to isotropy ” represented by the first term becomes all the more significant, the more anisotropic the flow is. In fact, if w?
is large, the term acts like a sink, thus reducing the large initial value; if w? is too small, the term acts like a source to increase it.
Laboratory data on stably stratified turbulence (Webster 1964) have shown that the ratio g*>/w? grows from 3 (isotropy) to 6 as the
Richardson number increases from 0 to 0.4 (see also Itsweire & Helland 1989; Holt, K oseff, & Ferziger 1992).

Third, consider the equation for the convective flux obtained by multiplying equation (11) by 8 (fluctuating temperature) and
averaging; see equation (34) below. The pressure term generates the term

m=9 (13)
(3x,~

While the complete structure of this vector will be discussed later, equation (53), the same type of physical argument presented
earlier suggests that equation (13) contributes terms of the form

0 — 0 T
atw(9+azw0--—r wl+ - (14)

In the main convective region, where w8 > 0, the pressure term acts like a sink for the convective flux w8 (in fact, the vector u; 6 must
vanish in an isotropic case), whereas in the OV region, where wf < 0 the pressure term acts like a source and tends to restore it.

Fourth, from a turbulence theory viewpoint, we recall that the neglect of the pressure terms allows the third-order terms to grow
too rapidly, which in turn requires unphysical clipping. This phenomenon is mirrored in the Fourier space analysis (Orszag 1977),
where it was found that once one uses the Gaussian approximation for the fourth-order correlations (Paper I, eq. [41]), there is
insufficient damping, a problem that is usually solved with the introduction of an irreversible damping represented by the pressure
terms. This procedure is at the heart of the eddy-damped quasi-normal Markovian (EDQNM) model that has proved very
successful in the treatment of isotropic turbulence (Lesieur 1991).

In conclusion, since OV occurs in a stably stratified regime characterized by a high degree of anisotropy, the pressure correlations
become particularly relevant since they are the only terms in the Navier-Stokes equations that deal with this phenomenon. In our
previous treatment (Paper I), we used expressions_for II;; and II{ first pioneered by Lumley and collaborators who expanded
equations (12a) and (13) in power of both b;; and »;0 and retained only the linear terms. Recently, Shih & Lumley (1985), Fu,
Launder, & Tselepidakis (1987), Shih & Shabbir (1992), Speziale (1992), and Speziale et al. (1992) have generalized the original
expressions to account for nonlinear terms. These new expressions will be employed here to assure a better treatment of the
anisotropic turbulence that characterizes the OV region.

Finally, even though it is not explicitly stated, the first pressure term in equation (14) is responsible for the linear term in the
phenomenological equations for the convective flux (Gough 1976; Ulrich 1976) discussed in § 13.

1.4. Stable Stratification, Gravity Waves

Are the expressions for the dissipations € and €, given by equations (9) valid in general? The answer is no, since the OV region is
characterized by stably stratified turbulence

oT <6T

E— E>ad>0 or V-V,<0, (15)
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where the convective flux is negative, wé < 0. In this situation, eddies working against gravity lose kinetic energy which feeds density
fluctuations (gravity waves). This loss of energy by the eddies violates the premises for the validity of the Kolmogorov spectrum.
Consequently, equations (8) are no longer valid in the OV region. We shall see in § 6 that equations (9) must be generalized to
become functions of the turbulent kinetic energy e

c.=>CLe), = Cle), (16)

and the problem is then to construct the functions C(e) and Cye) so as to take into account the different physical nature of

turbulence in a stably stratified case. We use recent results pertaining to stably stratified turbulence to compute the functions C,
and C,.

1.5. Kinetic Energy Flux
The exact dynamic equations indicate that the complete flux conservation is

Fext=Fr+Fc+FKE’ (17)

where Fyp = %pm is the flux of the turbulent kinetic energy which has been infrequently included in stellar structure calculations.
However, recent numerical simulations have shown that in solar-type stars, Fyp can be as large as 50% of the total flux (Chan &
Gigas 1992). To include Fyg, we must extend the formalism beyond the Boussinesq approximation.

1.6. Hydrostatic Equilibrium Equation

We find that turbulence alters the standard hydrostatic equation in two ways: the mechanical part of turbulence contributes a
turbulent pressure while buoyancy contributes a small term.

1.7. Thin-Layer Approximation
It is customary to assume that for a variable 4 (Spiegel & Veronis 1960)
04

—> AH! or d< H

%2 P (18)

where d is the extent of the convective region. Equation (18) is valid, for example, within the Earth’s convective boundary layer,
where d ~ 1 km and H, ~ 7 km, but becomes invalid in stars where d may encompass several pressure scale heights H,,. In this
paper, we remove equatlon (18) by removing the Boussinesq approximation.

2. THE BASIC EQUATIONS

The basic equations describing a compressible fluid of total density j, pressure j, temperature T', velocity v;, kinematic viscosity v,
and thermal conductivity K (=c, py) are given by (d/dt = 8/0t + v;0/0x)):

d o & L
Pav = -a—xi—gip-l-vp o v; — 2D€;3 0, Q; (19)
5 dT _dp T »? a0, \? 3
K— — v, + | —
P dt dt + asz + H[axi axj Ulvj + axj + Cpr ’ (20)

where ¢, pQ is the gradient of an external flux, u = pv, €;; is the antisymmetric tensor, and Q is the angular velocity. With respect to
Paper I, we have added the viscosity term on the right-hand side of the temperature equation to account for the contribution of
viscous dissipation to the generation of entropy. This term, which gives rise to €/c, in equation (26) below, is found to be
instrumental for a correct treatment of the complete flux conservation law. In addition, we assume a perfect gas law j = RjT. First,

we split the variables into an average and a fluctuating part

p=P+p, T=T+0, Pp=p+p, v,=U++uy. (1)
Here P, T, p, and U, represent the average fields; the fluctuating components have zero average

P=6=p=u4=0. 22

Assuming further that P = RpT, and neglecting second-order quantities, we derive for p’ the relation
0 P 1
—=—af + =, =—. 23
P +5 = 23

In the standard Boussinesq approximation (Paper I, eq. [21b]), the second term with the fluctuating pressure p/P is absent. The
physical interpretation of the terms arising from its inclusion will be discussed shortly. Inserting equations (21)-(23) into equations
(19) and (20), and following the procedures outlined in Paper I, we obtain the dynamical equations for the mean and fluctuating
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variables (D/Dt = 8/0t + U;8/0x;, 2, = ¢g;0,9; =0, 0, g):

DU, 1 0P o — .
E: ~<gi+p 5x> 8x +N1 2p€5 v S, (24)
Du; ouU, op 0 — 0%u, )
p—=—pu —— —p 7 (wu; — wu) + 4,00 + vp — + Ny — 2pe;0,Q; (25)
Dt “iox, ox Fox, g oxz 2 R
DT ?*T 0 — € 1 oP
Dr X@x a7juj(J+C—p+ U& +Q+ Nj, (26)
Do oT %0 v [ [ou\? ou; \?
ey, _ i 27
Dt u’@xj (?x (u; 8 — u@)%—x(3 2+ [(6}() <8xj)j|+N4’ @7

where we have taken the v — 0 limit wherever possible. The non-Boussinesq terms Ns are given by

dp pp
Ni=_—ag L 28
" OC06x,+P8xi’ 28)
. 10pP p 0P ap 1 ap op
i = £ £ _ 5L 2
N = (9' p ox )”9 P ox, “( ox; 86x> (”axi Pox,) @)
opP ap 1 ap
N; = UjA; — + by, — — — pu; — 30
pc, Ny = +u; ( >6xj+au’6xj Ppu’éxj’ (30
with
op 1 dp
Aj=af -~ ——p— 31
j=af ox; P b ox;’ 6D
0P — — 1 oP op ap 1 op ap
N, =UjA; el . Ou) — — = 0 e X _

¢, PNy =U;A; + y; i o, + (pu pu;) + |:oc(0u, Ou;) P (pu; — pu,):| axi a(u,f) o, u; 6 Ox,-) P (u, P o, u;p o)
(32

and with

ap p 0P op ap 1 ap 8p

A=——|=—ab 6——-0—)—=[p=— 33
1= ox, <P >6x, ( o o) P\Pox, Pox 3

To understand the physical meaning of these new terms, compare the third term in N5 with the second term in equation (26). The
ratio is of the order of d/H, which, within the thin-layer approximation, was neglected. Analogous arguments can be applied to
termsin N,and N,.

3. SECOND-ORDER MOMENTS

Following the procedure outlined in Paper I, we derive the following results. For simplicity, we shall not consider the mean flow
U,. For the convective flux u; § we obtain, in lieu of equation (34a, Paper I), the equation

D— 0 — 0T —
Dt U; 0 + — a Bu u — U; ] a + /1 92 n,o + H; + Ci - 2€ij,‘quk9 N (34)
J

where the pressure correlation term is defined as (see Paper I, eq. [34b])

m=0 > , (35)
ox;
and the new term C; is defined by
Ci= N30+ pNot+ 2 uge, (362)
14
with (Paper I, eq. [37f])
ue=1"'q%, . (36b)
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Next, consider the equation for the temperature variance 62. In lieu of equation (35a, Paper I), we have

R J— — T %6 .
Dt+a—iui0——2u,~9—6;i+x—ax*?—2eg+c, 37
where
1o, 1 —
EC N49+—e6 : (38a)
P
with equation (38¢, Paper I)
f=1"14%. (38b)

Next, consider the equation for the Reynolds stress u; u;. We derive

D— & —
—uu+—Duk=ilu19+/1]u,9—HU—GU-FC

Dt i axk ij = 2£2z'j 5 (39)
where ¢;;is defined in equation (4b) and (we use the notation a ; = 0a/0x;)
Dy = wu;u Q;; _(elpku_uk%—epku_uk)ﬂ Iy =wp,; +up,;, Ci;=Nhu;+ Nju; . (40)

Clearly, the third-order moments D;; and II;; represent the flux of u;u, u;u; and the pressure-strain correlatlon Finally, by taking the
trace of equation (39) one obtains the cquatlon for the turbulent kmetlc energy per unit mass e = 3u; u;,

De 1 0 — 1 1
LD, =Aub—-I. —e+=-C:i — Q... 41
2axk iik iU 2 ii € 2 ii ii ( )

4. EVALUATION OF THE C TERMS

We shall now compute the C terms arising from the non-Boussinesq approximation. Making use of several result of Paper I, we
derive (the mean flow contribution can easily be evaluated if necessary):

, g (= 1 — g ~1,57 rg
piC, = —C—<w2+cl,ﬁp9)<l—;*>—2csr tawf? — ¢y, gu26®

p

+ (314 cp)—1;3’ + gacljl(cu —1+ g;*> Ow? — gy ab? + (rcp)_lq—zv; , 42)
where
1 opP 0 — )
g1+ =S LW, 2 4
s g< +gp62> W =P P (43a)
ph = — Copg0 . (43b)
In equation (43a) we have used equation (24) without N, and p, is the turbulent pressure. Similarly, we derive
1 g — . o 9x -1735
zC'=—=Wl+ad'wl1—-=]—=Bco— 1)zc,)” "q°0, (44)
2 C, g
and
1 —_ — —
% C;=— % pw (1 gg*> + 3cot tag?0 — g, 00w, (45)
L Cyz= — 4 pwl 1 — 9x)_2 1y 92O — gt taw?0 + ! (cs + 3co)t " lag?0 — g, abw (46)
2p P g 3 3 * ’

where, in analogy with the second of equation (43), we take

pw = — Cl pg*w . (47)
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The numerical coefficients in equations (43) and (47) are given in Appendix A. It is important to note that in the Boussinesq limit

1 N p—
—C"-—»—EWO, C3—>—p£w2, (48a)
2 ¢, <,

so that the terms 07/0z in equations (34) and (37) get renormalized to

oT oT g oT [T
— a4+ == —} = - 4
z ¢, 0z (62 >ad A, (480)

as expected (see also Paper I, eq. [27a] for the definition of ). With relations (42)—(47), we have expressed the functions Cs either in
terms of second-order moments, which we solve for, or in terms of third-order moments which we shall express in terms of
second-order moments in § 7.

5. PRESSURE CORRELATIONS

First, consider the pressure-temperature correlation term (35). Because Poisson’s equation (Paper I, eq. [42]) is linear in p, it has
been customary (Lumley 1978) to distinguish three contributions: a rapid part due to the interaction between turbulence and the
mean flow, a return-to-isotropy part, contributed by the turbulence-turbulence interaction and finally, a buoyancy part. We write (in
this section, the pressure is understood to be in units of the density p)

T¢ = I1%rap. part) + [I¥ret. to isotropy) + M¥buoy.) . 49)
Since in the present treatment we have no mean flow, the first term is zero. For the second term we write

o6

0 —
I1ret. to isotropy) = — pf — p — (50a)

0x; dx;’

where

ph=—Cq%0, (50b)

00 08 Ou;
= 50¢
Py hit u9+(V+X)5 %, (50¢)

i

The first term in equation (50c) is the so-called return-to-isotropy (or slow part), first suggested by Rotta (1951) and 7 is the kinetic
energy dissipation time scale

T = % . (51)

Lumley (1978), Shih & Lumley (1985), and Shih & Shabbir (1991) have suggested the expression
(buoy.) = 3,46 + 4, Y, (52a)
4eY;; = 2y, 92b + 4y, 0u, Gu + 2y,e” Hby Gu + by Ou)u, + yse 16%b, by » (52b)

where f; is a dimensionless function given in Appendix A and b;; is given by equation (12c).
Putting these results together, we have the complete expressxon

—_— — ) 80 ou,
H?:flr‘lui9+y12i02+,1,-Y,.j+ap0—( +x)a——£ (53)

If we neglect the nonlinear terms by taking
72,345 =0, (54

the first two terms of equation {53) reduce to equation (43a, Paper I) if we callf; = 2¢¢; and y; = ¢,. For the reasons explained in the
Introduction, the new nonlinear terms provide a more complete description. The dimensionless functions f; and y’s are given in
Appendix A.

An analogous treatment of IT;;leads to

I1;; = II,f{rap. part) + I1;(ret. to isotropy) + II;{buoy.), (55

where, as before, the first term is zero. As for the second term, we write

. 0 — 0 — —_— —
IT; {ret. to isotropy) = (a pu; + o P j> — (pu;,; + pu;) (56a)
J i
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where
pu; = — C2 q%u;, (56b)
(pus; + pu;) = — 2c,7 'by;. (56¢)
Finally,
I, (buoy.) = (1 — B}, BY + 4 AL, (57a)
where
By = 8, 0u; + 8;.0u; — 30,;0u, (57b)
and
A= —3(1 + 4B5)Al + 31 — 4B)ICY + e 1(Bs — Dby 0uy + (B, + 3B5)DY + Bo B + 3e™2Bsby;by, 0u, (570)
with
2edl; = bikg_uj + bjké;i - %5ijbpkap > (57d)
2eCt; = (04 b, + S bip — 30 bu ), 0 (57¢)
46*D¥; = [bybj, + bybiy — O him + O3 bim)bmpltt, 0, (57f)
4€*EY; = (b tt; 0 + b 4; by — (Bis by + 03 bim)bmp i, 0 . (57g)

If we neglect the nonlinear terms, only the BY; term survives and we recover equations (44 and 44a [Paper I]) provided we call
1 — B5 = ¢s. Finally, we note that

AL =0. (57h)
Putting these results together, we obtain

_ 0 __ 0 __
;= 2c,t 'by + (1 — Bs)A B + A AN + (é? pu; + a_x, pui> ) (58)

The dimensionless functions f,’s and the other constants are given in Appendix A.

6. DISSIPATION RATES € AND ¢,

The calculation that led to the expression of € and €, given by equations (9) was based on the assumption that the scales that
dissipate kinetic energy and temperature variance, are (a) isotropic, (b) inertial (describable by a Kolmogorov and Batchelor-Corrsin
spectrum, eq. [8]), (¢} passive (transferring energy without dissipation), and (d) cascading energy from the largest to the smallest
scales. While (a)—(d) seem justified in the case on unstable stratification (eq. [7]), all four break down in the case of stable stratification
(eq. [15]) that occurs in the OV region.

Working against gravity, the eddies lose some of their kinetic energy which is transformed into potential energy represented by
the 62 fluctuations (Fig. 1). This can be seen from eq. (82) or Paper I, equation (37), where in the case of stable stratification, the
negative flux wh acts as a source for 6%, while it acts as a sink for the kinetic energy, equation (84) or Paper I, equation {41).
Specifically, introducing the potential energy PE,

PE = 1g06%(0T/0z)™" , (59)
we derive from equations (37) and (41) (KE = Ju; u;)
D go 1 1 1 ga
~ (KE + PE) = — L P ) LR L o
p; KE+PB) (6 e 6T/62> 2 a3 it 5 5762 © (60)

First, we note that the convective flux wé is no longer present: physically, this means that convection is a process that transforms
kinetic into potential energy and vice versa and thus, in the total energy balance, is exactly compensated.

In the stably stratified case, the fraction of kinetic energy transformed into potential energy does not, however, simply cascade
toward smaller scales and then dissipate through molecular processes. In fact, the latter are too inefficient to dissipate all the kinetic
energy extracted from the eddies: the only alternative is a backward flow toward larger scales (Schumann 1987; Dalaudier & Sidi
1987). This process violates (d) above.

Assumption (b) is also violated since the smaller scales can no longer be represented by an inertial spectrum alone since the
spectrum now exhibits two ranges, a buoyancy subrange and an inertial subrange separated by a wavenumber k, = n/A, = ne'?/N,
where N? = ga|0T/0z — (0T /62),4). If (k) and e4(k) represent the fluxes of kinetic energy and temperature fluctuations across a
given wavenumber k, the inertial subrange defined by e(k) = constant = € is attained only for wavenumbers k > k,, whereas for
k < k,, e(k) decreases with k indicating a net loss of energy from the eddies. The buoyancy subrange contains gravity waves that are
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only weakly damped (and thus their effect is maximized), while in the inertial subrange gravity waves are strongly damped and a
constant flux €(k) = € can be attained. Alternatively, one can view the new buoyancy subrange as a “buoyancy modified turbu-
lence,” or as “turbulence modified waves™ since, as Gargett et al. (1981) have pointed out, one is considering “ vertical scales
between wavelike motion at larger scales and locally isotropic turbulence at smaller scales.” Since the eddies have lost some of their
kinetic energy to gravity waves, the energy left to be dissipated by molecular processes is less than in the unstably stratified case and
so one concludes that

€(stable) < e(unstable) , (61)
and correspondingly
eg(stable) > eg(unstable) , (62)

which imply that the functions C, and C, appearing in equation (16) must be such that
Cle)<t, Cole)>1. (63)

The first turbulence models to account for stable stratification are due to Bolgiano (1959, 1962), Shur (1962), and Lumley (1964).
Since there are difficuities with Bolgiano’s model (Phillips 1965), we consider Lumley’s model which predicts a kinetic energy
spectrum E(k) that encompasses both inertial and buoyancy subranges depending on the ratio k/k,, where k, = (N;3/€)*/2,

E(k) = Ko €2P[1 + (k/ko) " *PJk=%3 . (64)
Equations (64) and the first of equation (8) yield the first of equation (9a) but with
¢~ Cle) = c(1 — 3 Ko n 2IP/A})*? (65)

which satisfies equation (63). Is the Shur-Lumley model the correct description of stably stratified turbulence? While atmospheric
and oceanographic data (Gargett et al. 1981; Gargett 1985, 1989, 1990; Weinstock 1978a, b, 1985; Dalaudier & Sidi 1987) are in
qualitative agreement with equation (64) that predicts E(k) ~ k=3 for the buoyancy subrange, measured spectra exhibit indices
ranging from —2.5 to —3. Morever, Phillips (1965) pointed out that the main assumption underlying equation (64) that E(k)
depends on € and k only is actually not valid: the flux of kinetic energy must also depend on the kinetic energy of the eddies. Lumley’s
theory was reviewed by Weinstock (1978a, b, 1980, 1985a, b, 1990) who pointed out, among other things, that a physically complete
treatment of a stably stratified flow must explicitly account for the gravity waves that ultimately store the kinetic energy lost by the
eddies, and that equation (64) is based on an “unjustified identification of Eulerian and Lagrangian time scales.” This implies that
E(k) must depend not only on N and k, but also on the kinetic energy itself. In this case, the complete form of the spectrum E(k, N, ¢)
can be expected to be considerably more complex than equation (64). Recently, Canuto & Minotti (1993) and Cheng & Canuto
(1993} have used the Weinstock model to derive the following results:

3/2

e=% o (66)
unstable stratification:
I/ = ¢! = constant ; (67a)
stable stratification:
I/ ={[1=-a;x*(1 +ayx?) 2] —ayx*(1 + a,x) "1} 73 ; (67b)
where
x = (=N} 12 (68)
v ol - (L) ®
At the same time, the dissipation €, is computed from
1@
€ =15 Co€ (70)

The numerical coefficients a; and ¢’s are given in Appendix A.

In Figure 1, we sketch the main physicial features of the convective and OV regions. In the former, V — V,_, > 0 (unstably
stratified turbulence), the convective flux is positive, w8 > 0, density (or temperature) fluctuations feed kinetic energy 62 — w?, and
the dissipation rates € and €4 are such that € is greater than its counterpart in the OV region, whereas ¢, is less, due to the fact that a
fraction of the 6-stuff goes to feed w? rather than being left to dissipate at the molecular level.

In the OV region, turbulence is stably stratified V — V,, < 0, the convective flux is negative wf < 0, eddy kinetic energy is lost in
the work against gravity and goes to feed the reservoir of % fluctuations (gravity waves). Since this leaves less kinetic energy to be
dissipated, e(OV region) < € and conversely, €,(0V region) > ¢,.
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7. THIRD-ORDER MOMENTS

The dynamic equations for the third-order moments were derived in Paper I, equations (61)—(66). In the stationary case, these
equations form a set of linear algebraic equations that can be solved analytically. The results are:

w20:
5 0 — 0= 2y 003 0= — P
gatw?l = gatd, — % w0+A26—w + (ga) A38_6 +A4Eq , A = Agytw® + Ay, gatwl (71)
w3 |
W3 0 — 0= 2 2 0 _2 W2 2.0
w> = gotB, 5;“’9'*'326_“’ + {gar) 336_9 + B, — 57 B, = B, tw* + B, gat*wl ; (72)
wo?
2,02 0 — 0 = 2 02 0 — 2 2.0
(gor)*wb =garC15w0+CZEw + (gat) C3—é—0 +C46 qz, C, = Cpyw* + Ciy got*wl ; (73)
4?0
2 0 — 0= 2 0 = 0= 2 200
goatq 8 = gutD, — % w9+D26—w + (got) D30_9 +D4(’3 q? D, = Dytw® + Dy, gatwl (74)
@w
pra 0 — 0= 0 0 - P
q*w = gotE; P w9+E26—w + (gar)? E35—9 +E4&q , E, = Eytw* + E;, gat*wé ; (75)
0
g3 0 — 0= 2 0 = 0 — 2 2.0
(gut) 8 =gonF1£w9+F2£w + (got) F35;0 +F4Eq , Fy = Ftw® 4+ Fiogat“wl . (76)

The factors ga and gat that appear on the left-hand sides of equations (71)—(76) were introduced so that all third-order moments
have dimensions of (velocity)®. We note that the commonly used diffusion approximation corresponds to taking (Kuhfuss 1986, eq.
[34]; Stellingwerf 1982, eq. [27]; Xiong 1985a, b)

A2,3,4=0, B1,3,4=0, C1,2,4=0, D2,3,4=0, E1,2,3=0, F1,2,4=0o (77)

Recent work has shown, however, that equations (77) fail to reproduce the well-established countergradient phenomenon which has
been observed in numerical simulations, laboratory turbulence (Schumann 1987; Finger and Schmidt, 1986), and atmospheric
turbulence (Deardorff 1972).

In equation, (71)—(76) the functions 4,, ..., F, play the role of an effective turbulent viscosity or diffusivity (see § 8). The
dimensionless functions A4, ;, A,,, etc., are given in Appendix B.

8. EFFECTIVE TURBULENT VISCOSITY (DIFFUSIVITY)

The third-order moments equations (71)—(76) exhibit a universal structure, namely they are a linear combination of the deriv-

atives of the second-order moments with turbulent viscosities (or diffusivities) A, ..., F,. The latter also exhibit a universal
structure since they all are the combinations of a “ mechanical part”
~Tw? ~ le!? (78)
plus a “ buoyancy part”
garzw R (79
so that the effective turbulent viscosity v¢f is given by
v = ay, + bgat?wé (80)

where a and b are dimensionless functions of the variable (N7)?, Appendix B.

Since in a convective regime wd is positive, the usual approximation v¢" = v, underestimates the true value of the turbulent
viscosity, whereas in the OV region, where w8 is negative, v¢'f = v, overestimates the true turbulent viscosity. The double approx-
imation represented by equation (77) together with v = v, has been adopted by Kuhfuss (1986, equation [31]), Stellingwerf (1982,
eq. [27]), and Xiong (1985a, b).

9. THE NEW MODEL

Using the previous equations, we can finally write the equations governing the variables of interest. We consider the case
of parallel geometry. In the case of spherical geometry, the d(...)/0z terms in the left-hand sides of equations (81)—(84) become
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r~28/0r(r?...), while the 4(...)/dz terms in equations (71)—(76) become &(...)/dr. These equations are the generalizations of equations
(57)-(60, Paper 1) to include the new effects represented by the terms C’s and P™ (for ease of notation, we take p = 1).

Convective flux wé:

Ko A e S v SRR P S P v SR VR it SR 1)
a" T PP=""% v t 2% o2 3 ’
Temperature variance 6
0= 09— oT —  0°6*
T L 7, C? - 82
a +azw8 262W0+X822 €+ C (82)
Turbulent kinetic energy in the z-direction %72 :
0l 01— — = 15 1 — 1 1 .
EEWZ_{-E(E w? +pw>= —ci1 1(w2—§q2)+§(1 +2ﬂ5)ga9w—56+5C33—Pw’ ; 83)
Turbulent kinetic energy e = %q—z
0l 0 (l—5— — — 1
aiqz+£<§q2w+pw>=gaw9—e+ic,-i. (84)

The terms C,, C%, C;;, and C,; are given by equations (42)-(46); pw and p0 are given by equations (47) and (43); the third-order
moments are given by equations (71)—(76). The nonlinear contributions to the pressure terms are given by equations (53) and (55).
They are (b;; is given by eq. [12c]).

(go) " ePy = $bas(y, + $ysbaze™ )07 + (y3 + yabyze” Hwb)?, (85)
2go)”tePy = —b33 0w(l + B5 — %ﬁs by e ). (86)

The functions y’s, f’s, and the constants are given in Appendix A. To solve equations (81)—(84), one further needs the temperature
gradient 0T /0z and the dissipation rates € and €4, to which we now turn.
As shown in Paper 1, § 12, the local limit of equations (81)—(84) yields the MLT results (Bohm-Vitense 1958; Cox and Giuli 1968).

10. THE TEMPERATURE PROFILE: NEW FLUX CONSERVATION LAW

The true temperature gradient is obtained by solving the flux conservation law which we now derive. Using the definitions

F,=c,pwl, F,=—K%:—, 87
we have, from integrating (26),
Fm+F,,=F,+Fc—JcppN3(z)dz. (88)
The new term F;:
F,= f e(z)pdz (89)

represents the contribution to the external flux due to the generation of entropy, and thus of temperatue, arising from the (rate of)
dissipation due to frictional forces. While this term is usually neglected (e.g., Zahn 1991), it must be kept for a consistent derivation
of the full conservation law. As for the term N5, we use equation (30) and neglect higher order terms to derive

oo == (Lo g ) == g Ee %0
where F,is the pressure flux
F,=—pw. (91)
Thus, equation (88) becomes
Fou+F;=F +F(1+n)+F(1+n,), 92)
where
n F, = j(l —y " DH,'F2dz,  n,F,= JH;IF,,(Z)dZ 93)
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are the contributions due to the non-thin layer approximation. To exhibit explicitly the turbulent kinetic energy flux
Fxe = 3pg™w , 04)
we first integrate the kinetic energy equation (84) thereby obtaining (in the stationary case and keeping the terms of highest order)
Fep+ Fa=mF +F(1+n,). 93)
Combining equation (95) with equation {92) we obtain
Fou=F, +F 4+ Fgg, (96)

which shows that the total external flux is transported by radiation, convection, and turbulent kinetic energy, while in most
astrophysical calculations the flux conservation is taken to be

Fexler+Fc’ (97)

whereas it is known that in sunlike stars Fyg can be up to 50% of the total flux (Chan & Sofia 1989).
Finally, the expression for 0T/0z needed in equations (81) and (82) is determined from equation (96) which gives
or _ot,
0z 0z

+ 17 wh + K 'y, (98)

where we have introduced the customary fictitious temperature gradient 07,/dz via the relation F,,, = KTH, 'V,, where V, is the
gradient as if the whole external flux were transported by radiation.

11. DISSIPATION: LOCAL AND NONLOCAL MODELS

The solution of the basic equations (81)—(84) requires the knowledge of both € and €,. We suggest two models. The local model is
represented by equations (9), where e and 67 are obtained from solving equations (84) and (82). However, the mixing length [ would
have to be prescribed using empirical expressions, an approach used by several authors (Xiong 1986, Umezu 1992; Unno et al. 1985;
Unno & Kondo 1989). For example, Xiong finds that the extent of the OV is given by

d=14, I=cH,. (99)

Nonlocal model—In this case, € is the solution of the differential equation (Paper I, egs. [46]-[37f]; Zeman 1992, private
communication)

2 _— _ _
ta—(r“qzw)=2a1gaw0—a26+a3Nw2 \ (100a)
z

where 7 = 2e/e, a; = 1.44, a, = 3.8 and (for the definition of 8, see eq. [48b])
N? =|gap| . (100b)

Furthermore, in the case of unstable stratification a; = 0, while for stable stratification a; = 0.1. Equation (100a) can be integrated
to yield (C is a constant of integration with dimensions)

_p. YD 101
€@ =Fe o7 o)z (101a)
where
O(z) = Ja, e (D)Fii , (101b)
Y(z) = exp J (a,gowh + La; Nw?)Ft dz' . (101¢)

The presence of the integrals is a clear indication of the nonlocal character of the expression for €(z). As far as ¢, is concerned, we
suggest the use of equation {9a), as recently done by Hanjalic & Vasic (1993).
The ratio of € computed nonlocally via equation (101) to the € calculated via the local expression

(102)

is shown in Figure 3. The ratio is relatively close to unity in the highly unstable convective layer while it differs greatly from unity as
one approaches the inversion layer (stable stratification) where the local expression underestimates the dissipation.
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1.2 L o e B e e S S e m e

o8-

C.6

G2

4.0

Enc/ €L

F1G. 3.—The ratio of the dissipation rate € computed nonlocally to the value computed locally , egs. (101) and (102), for the case of a convective planetary layer. As
one can see, within the main convective region, the ratio is of order unity but the nonlocal € exceeds the local value in the stable region.

12. HYDROSTATIC EQUILIBRIUM EQUATION

Using equation (24} in the stationary limit and equation (28), in which we neglect the fourth-order moment as well as equation
(35), we obtain the new hydrostatic equilibrium equation

0
5 P Hp)=—gp(l +x), (103)
zZ

po=pw?, x=fit g lawh + y,a%02 . (104)

Turbulence has therefore two effects: the kinematic part contributes a turbulent pressure p,, while buoyancy contributes to gravity
via the convective flux wf and the temperature variance 6%, equation (52).

13. OVERSHOOTING: PREVIOUS MODELS AS PARTICULAR CASES OF THE PRESENT EQUATIONS

As shown above, the complete nonlocal model requires the solution of five differential equations for the functions w8, g2, 8%, w?,
and €. The majority of the models proposed thus far employ only one differential equation for one turbulent variable, usually chosen
to be w? or, less frequently, wh. The most complete treatment to date (Xiong 1981, 1985a, b, 1986) solves three differential equations
for wf, w?, and 0%, while both dissipations € and ¢, are treated locally.

The dissipation e —Most authors have assumed € = 0 (Roxburgh 1978, 1989; Shaviv & Salpeter 1973 ; Bressan et al. 1981; Bertelli
et al. 1986; Zahn 1991). The most commonly adduced argument is that € is proportional to v, while the fact that it is at the same time
also proportional to a divergent mean-squared vorticity is overlooked. We have already discussed the fact that the value of € is not
governed by the small scales or much less by viscosity, but by the large eddies which are the repository of most of the energy. What is
determined by viscosity is the scale at which dissipation occurs. This occurs because the nonlinear interactions that distribute the
energy input to the whole spectrum of eddies conserve energy, and so the entire energy fed into the system is cascaded unaltered to
the smaller scales where it is dissipated by molecular processes. Turbulence modeling over the years has shown that € is one of the
most difficult variables to compute and that its determination requires solving the whole problem, that is, equations (81)—(84). It is
therefore not surprising if € is such a critical variable; see equation (118) below.

Furthermore, numerical simulations covering the pressure range 0 < In P < 8 (Chan & Gigas 1992, Fig. 2), show that € is smaller
than buoyancy work in the region 0 < In P < 4, but higher than buoyancy work in the region 4 < In P < 8, so that the integrated
quantities satisfy equation (5¢c). In Figure 2 we show the ratio of the local values of the dissipation € to the production (= gaw6)
terms, i.e., the two terms on the right-hand side of equation (118a), as derived from recent large eddy simulation of turbulent
convection {K. L. Chan, private communication).

Thus, one must conclude that the assumption € = 0 is not an approximation but a violation of an energy conservation law.

Some authors have attempted to include the effect of € in their model. For example, Maeder (1975) and Doom (1985) have
suggested that € be taken as

pe=—(1—pr L p,, (105)
or
with 0 <y < 1. Numerical simulations show that y is hardly a constant and a constant y would not satisfy the conservation law (5c¢).
Further comments can be found in Umezu (1992). Other authors (Shaviv and Chitre 1968; Umezu 1991, 1992; Kuhfuss 1986, 1987)
have used the local expression
e3/2
e=D T (106)

with a constant D, interpreted as a drag coefficient.
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Shaviv & Chitre (1968); Umezu (1991, 1992)—These authors suggest a nonlocal equation for the velocity field w = (w?)!/2 of the
form
W2 W3

—=ga;v—0—DT,

PP (107)

where 0.1 < D < 1.

The question now arises: can equation (107) be derived from equation (83)? First, let us compare the left-hand sides of the two
equations. Adopting the diffusion approximation, we have from equation (72}

— ow? ow?

W3 = — | By |tw? o = id

2z = Ve (108)

where we have used the fact that B,; is negative (Appendix B). Since the pressure term pw is a third-order moment, it can be
considered included in equation (108). If v, = Iw, then equation (83), neglecting the anisotropy and non-Boussinesq terms, becomes

ow? o*w? e [ 13)\.2 — 2
wa—v,?—~2c4r w —3q +3(1+2ﬂ5)gaew_3€’ (109a)
where (¢ = z/])
1 dv,
s 5 109b
f o (109b)

The left-hand side of equation (109a) is quite different from that of equation (107) since f'is not necessarily a positive constant and the
curvature term is not necessarily zero. It seems that we have to consider an even lower order than the diffusion approximation, namely

w3~ (w2, (110)
so that equation (83) becomes

3 ow? — 1 2 —

e —2021‘1<w2 -3 q2> +3 (1 + 2B5)gadw —
which is more similar to equation (107). However, how reliable is equation (110)? In Figure 4 we show, for the case of the strongly
convective planetary boundary layer, that approximation (110) is satisfied in the main part of the convective layer but that it fails as
one nears the region of stable stratification, which is precisely the region of interest.

Consider now the right-hand sides of equations (111) and (107). The first term in equation (111), representing anisotropy, is absent
in equation {107), implying that turbulence has been assumed isotropic. However, we have already seen that such an approximation
may be valid in the main body of the convective region but that it ceases to be so as one approaches the region of OV which is the
seat of large anisotropies. Figure 5 shows this fact for the case of the convective planetary boundary layer.

As for the dissipation €, equation (107) uses the local expression (106) with a constant D. However, we have seen from equation
(66) that D can be taken constant in the main convective region, but not so in the OV regions where it is actually less than in the

€, (a11)

W N2

0.8 -

O.Sé _:

///

O,O—L‘J‘lx‘#x,...l..,.< oo .. . .1 1 !

-1.0 -0.5 0.0 0.5 1.0 C.0 0.5 1.0 1.5 2.0
wi/we®'? az/(3 w#)
FiG. 4 FiG. §

FiG. 4—The representation of the third-order moment w3 via (F)”2 seems reasonable within the main convective region but fails in the stable region where w3

goes to zero faster than (w?)*?. The result is valid for a convective boundary layer.
F1G. 5—The value of the ratio g2/3w? clearly shows the high degree of anisotropy within a strongly convective boundary layer and especially in the stable region
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convective region (see eq. [67]). Since the authors cited above have used the same velocity independent D throughout the entire
convective regime, they have overestimated € and thus underestimated the extent of OV.

Last, consider the treatment of the convective flux wé. In principle, this requires that one consider another equation, (81). Since
this is not done, the flux is written as

WO = C (W) 2672 . (112)

Using again the convective planetary boundary layer, we present in Figure 6 the correlation coefficient C,,, which is constant only in
the main convective region while changing rapidly and becoming negative as one approaches the OV region. Umezu (1991, 1992)
has taken a variable C,, while Shaviv & Chitre (1968) have not.

This type of model has recently been used to study OV in massive stars (Umezu 1991, 1992) and in the Sun (Antia and Chitre
1993). From the last model one deduces that as D decreases (D = 1, 0.5, 0.3), the OV distance d increases (d/H, = 0.17, 0.30, 0.40)
(H. M. Antia, private communication 1992).

Bressan et al. (1981) and Bertelli et al. (1986)—To account for nonlocality, these authors also employ a differential equation for
the velocity field w. In the chemically homogeneous case, their equation (6) is of the form of equation (107) and thus, all the previous
discussion applies here too. There are, however, two important differences: dissipation is neglected, € = 0, which alone overesti-
mates the OV region, and the convective flux w is not determined from equation (112) but from assuming that the real temperature
gradient V is equal to the adiabatic value in both the convective and overshooting regions. F, is then computed from the flux
conservation law. Renzini (1987) is of the opinion that the latter approximation is the cause of the what he terms a “dramatically
large overshooting ” obtained by these authors. Since the inclusion of dissipation would decrease the extent of OV, it is not clear to
us at this point how much the approximation V = V,, alone is responsible for (we shall return to this point when we discuss
Roxburgh’s model).

Kuhfuss (1986, 1987)—This model is more complex than the previous ones in that the kinetic energy equation includes the
third-order moment under the diffusive approximation, equation (108), with the kinetic energy e substituted for 3w?. However, it has
recently been shown (Canuto et al. 1992) that the down-gradient formula approximates very poorly the true third-order moments,
as indicated in the case of the flux of kinetic energy 3¢°w by Figure 7. Application of the model to chemically homogeneous ZAMS
stars can be found in the 1987 paper.

Ulrich (1976) and Gough (1976)—Rather than a nonlocal equation for w, these authors have suggested a nonlocal equation for the
convective flux F, = w (c, p = 1). The proposed model equation is of the form

& F .+ 9 F F (1 ) o + 9 T (113a)
— — F, - = —a) o3 - .
Pk Po ot pif, aC D2 aC Dy b
Here { = z/H,and FY™T is the local MLT expression. The constants p’s are defined as
Po=( ~apy, pi=@a)", p,=G—ap, (113b)
where the o’s and a are free parameters. Whena = 1, " = o = a,,, equation (113a) reduces to Gough’s (1976) equation (11.14)
62
_2Fc_p1Fc=_p1FcMLT’ (113C)
o¢
with & = z/A,A = aH,,and a = 3'/%¢,.
Z 1.2 T T T ; 1A2: T T
_. Z £ —
Zi ol § "ol qdw ]
0.8 = 0.8 —
06- . 06 N
0.4k N c.4F g
0.2 ; —_ 0.2 ;
O.O-_L 2 4 . | ST N ] 0.0_ P PSR " " " P
-0.4 -0.2 0.0 0.2 0.4 0.6 -1.0 -0.5 0.0 0.5 1.0
we/(w2g2)’?
FiG. 6 Fic. 7

FIG. 6—The convective flux wh can be represented a la MLT, i.e., as the product of (w?)"/2 and (6%)!/2 only in a very narrow region of a convective boundary layer
F1G. 7.—The third-order moment g%w is pootly represented by the down-gradient approximation. The curve shows the true value of the third-order moment,
computed with the full equation (75), divided by the last term which represents the down-gradient only.
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Can equation (113a) be derived from the flux equation (81)? First, consider the third-order moment w28 in the diffusion
approximation,

—_ a J—
w2 = —v, — wh , v, =141, (114)
0z
where we have used the fact that the leading terms in A, are negative (Appendix B). Equation (81) then becomes (neglecting higher
order terms)
o2 2 g o
772 Fe T P05 Fo—piFe=—v "[fw® + (1 —y1)gad7] , (115a)

where

0 -
pOE;EVH P1 Efl(Tvz) T, (115b)
Note that the linear term p, F, originates from the pressure-temperature correlation IT{, equation (53).

Since there is no unique prescription of how to introduce the MLT conyvective flux, we shall do so by computing the right-hand
side of equation (115a) in the local limit using the MLT expressions for 6% and w?, equations (73a)—(79), Paper I, together with
equation (9a) to express 62 in terms of €, = fw0. Equation (115) then becomes

| 62 a MLT
?Fc+Ap06_éFc——p1Fc=_p3Fc s (115C)
where & = z/A, A = ljc,and 8p, = f1| A, |7, ps = 4p,(f1 O [1 + (1 — y,)re/t.]. Here, 1, = 7 and 1, correspond to the dissipation
time scales of turbulent kinetic energy and temperature variance, respectively. The constant C, defined as 3¢ ¢, C = 2(2 + ¢4, — 2¢),
is given in terms of the constants ¢’s defined in Paper I. As an illustration, we employ the values suggested by equation (44d, Paper I)
and Appendix B, namely y, = 7.5, 7/, = 1.6, C = 0.3,| A, | = 3, and obtain p, = 7.8 and 2p, = 5p,. Evidently, due to the different
definitions of the scale lengths, one can in principle change these values but not the ratio p;/p,. Some considerations are in order.

a) Gough’s equation {113¢) does not include F, (= 0F,/0z), while Ulrich’s general case does, even though his model results do not

include this term. Using equation (115b), we see that this is equivalent to assuming p, = 0 or, equivalently,

v, ~ constant . (116)
However, even on the basis of a simple K — € model (K = 34?) one would have instead
K?* [*N*

V.~ — ~

* € gaF

~ gal*B?F 1t 117
where € = gawd.

b} We had to treat the right-hand side of equation (115a) with the local approximation (MLT). Physically, this means the
following: a local theory interprets convection as a process in which density (or temperature) fluctuations feed velocity fluctuations,
6% — w? (see Fig. 1), which is true in the main convective regime; however, in the OV region, the opposite is true (Fig. 1): velocity
fluctuations feed temperature fluctuations, and this reverse process is not captured by the MLT. Thus, the local treatment of
right-hand side of equation (115a) does not account for the main physical process characterizing the OV region.

¢) The down-gradient approximation (114), which may be acceptable in the main part of the convective region, fails as one nears
the OV region, Figure 8.

12 v T T ]
VAR ]
7 = |
1.0+ -
0.8 —

0.4 _ i

0.2 i

ool o oo, R S
~1.0 -05 0.0 05 1.0

FiG. 8—Same asin Fig. 7 for the third-order moment w6
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Roxburgh (1978, 1989) and Doom (1985)—The starting relation of this model is the equation for the turbulent kinetic energy 1pq?,
equation (84), which, neglecting C;;, becomes

— 01 — 1 /0T
Yz 2 1—2C")— = 2 — _ — | F — 118
52 P1 T Cp) 5, 3 PaW T<02)ad .~ PE, (118a)
whereas Roxburgh writes it as (see Doom 1985, eq. [3])
01 — 01 —— 1 /0T
-~ - =——|—=—]F.. 11
2P T T(@z)F‘ (1180)

As one can seen, there are three differences between our equation and equation (118b): (1) in the present model, the pressure forces
act to decrease the flux of turbulent kinetic energy Fyg by the factor 1 — 2C}. This should lead to a smaller OV region. This term is
absent in equation (118b); (2) in equation (118a), we have, € # 0 and this again tends to decrease the extent of OV. In equation
(118b), € = 0; (3) equation (118a) contains (0T /dz),4 whereas equation (118b) contains (67/0z). Let us begin with this last point. The
time evolution of the kinetic energy is derived from the basic Navier-Stokes equations which do not contain temperature gradients.
Temperature enters only via the density variation in the gravity (buoyancy) term; using equation {23), the density difference is then
transformed into a temperature difference (=6) which, after being multiplied by a velocity to get the kinetic energy, produces the
term wé, i.e,, F.. Therefore, the combination of g and ¢, gives rise to (0T/0z),4 and not to (0T/dz).

Physically, in a convective regime a temperature gradient sets up a convective flux not kinetic energy. In fact, 07/0z appears as a
source on the right-hand side of equation (81). In turn, the convective flux acts like a source for the kinetic energy which explains the
presence of F, in equation (118).

The 6T/0z term in equation (118b) presents a further problem. When 0T/0z is negative, F, is positive {(convectively unstable
region), whereas when 0T/0z is positive, F, is negative (stable stratification, OV region), Figure 1. Since the right-hand side of
equation (118b) would be positive in either case, it would act like a source, which is contrary to the fact that in the OV region it must
act like a sink since kinetic energy is converted to potential energy and thus must decrease. On the other hand, the right-hand side of
equation (118a) is positive (source) when F, > 0, and negative (sink) when F, < 0, since the adiabatic gradient is always negative.

Equation (118a) can be transformed into a differential equation for the turbulent kinetic energy flux, $pg?w. Eliminating F, via
the flux conservation law equation (96), one obtains the expression for Fyg. Integrating the result between the extremesr, andr, of
the convective plus OV regions, we obtain with an obvious change of notation so as to introduce the luminosity L,

rz
J I:T'Z(aa—z) (Ly—L,) + 4nr2T_1p€](D(r)dr =0, (119a)
r1 ad

1{/0T 1/0T
In (D(r) = J\? [(E) — ; (E)ad:ldr N (119b)

with ¢ = 1-2C}. On the other hand, if we employ equation (118b) and carry out the same calculation, we obtain the Roxburgh
criterion

where

"2 oT
J T‘2<—)(LN —L)dr=0. (119¢)
s ar
Comparing equations (119a) and (119¢) we see that Roxburgh’s criterion is based on the following three approximations:
oT oT
w -0 = 120
¢y =0, € ’ or (6r>ad’ (120)

that is, no-pressure forces, no dissipation, and V = V,4. As we have already discussed, € = 0 is not an approximation but a violation
of the global energy conservation.

As for the last of equation (120), it is not required either by the mathematics or by the physics of the problem. For example, in the
case of massive stars, equation (120) has not been confirmed by the most complete model presently available (Xiong 1985a, b, Fig. 3)
which instead predicts that (cr = convective region; ov = overshooting region)

(V = Vadow ® 104V — Vo )er , (121)

indicating a very inefficient convection in the OV region. Furthermore, from a purely pragmatic point of view, V = V,, biases the
result by overestimating the extent of overshooting (Renzini 1987).

As for the first of equation (120), it is equivalent to neglecting a third-order moment which, however, has the effect of lowering the
extent of overshooting.

In conclusion:

a) To solve the OV problem, one must use the basic equations (81)—(84), (96), and (100);

b) If one selects not to do so and considers only one of the basic equations, for example, the equation for the kinetic energy (84), as
Roxburgh does, then;

¢) The correct criterion for OV valid for an arbitrary temperature gradient, including pressure forces and dissipation, is equations
(119a, b) not equation (119¢);
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d) In using equations (119a, b), one needs two critical ingredients, V and €. Assuming V = V,4 is like guessing much of the
solution. Guessing ¢ is even more difficult and taking € = 0 violates energy conservation;

e) With the critical ingredients V and € essentially undetermined, it seems fair to conclude that even the correct expressions (119a,
b), if considered alone, are so severely incomplete to become useless, at least as a tool to predict the extent of the OV region.

Shaviv and Salpeter (1973)—This approach, which has been used by several authors (e.g., Maeder 1975; Pidatella & Stix 1986;
Langer 1986; Skaley & Stix 1991), does not solve any of the dynamic equations (81)—(86): rather, it suggests an Ansatz of the form
(c,p=1)

F,.=wnb(r) > wr, r + A)(r,r + A), (122a)
wir, r + A) = J ' gob(r', r' + A)dr', (122b)
r+A
WJ+M=fﬂWW, (1220)
r+ A

where f = (T/H,(V — V,4). The first approximation is contained in equation (122a) where the ensemble average is split into the
product of two quantities w = (w?)!/? and 6 = (8%)!/2. One can further see that equation (122b) can be transformed into a differential
form similar to equation (106) but without the dissipation term. The remarks made earlier about the physical relevance of the latter
apply equally well in this case.

Xiong (1981, 19854, b, 1986).—Xiong’s work merits particular mention since in our opinion it is the most advanced formulation to
date. Both Xiong’s and our work have in common the general proposition to adopt the Reynolds stress decomposition method.
However, they differ quite substantially in the treatment of several important physical processes (see the Introduction) which have
been greatly clarified in the last decade of turbulence modeling. It may thus be instructive to list some of the most relevant
differences. Specifically, we refer to Xiong (1985b, Appendix):

1. Kinetic energy: equation (A15) coincides with our equation (84) if we neglect the C;; contribution. In fact, Xiong adopts the
Boussinesq approximation while we do not. _ _

2. Turbulence is assumed to be isotropic. For this reason, Xiong does not have two separate equations for w” and ¢°. As one can
see, in the limit 3w? = ¢°, equation (83) becomes indistinguishable from equation (84). The assumption of isotropy is also
responsible for the absence in Xiong’s formulation of the P™ terms in equation (83). However, as shown in Figure 4, anisotropy may
be one of the key features of turbulence in the OV region and its neglect is not a priori justified.

3. The third-order moments: they are all treated with the diffusion approximation which is actually two approximations, the
neglect of the gradients of other second-order moments as well as the contribution of buoyancy to the turbulent viscosity. As shown
in Figure 6 (Canuto et al. 1992), the diffusion approximation yields incorrect results in the case of the Earth’s convective boundary
layer.

4. Temperature variance: if we compare equation (A17) with equation (82) we note that it lacks the C’ term and that the
third-order moment is treated as discussed in (3) above.

5. Convective flux: equation (A19) lacks the C; and P¥ contributions; again, the third-order term is treated as discussed in (3)
above.

6. Gravity waves: are not included since € and €, do not satisfy relations (61)-(62).

7. The buoyancy range characterized by a k> rather than a k3" spectrum is not accounted for because of the use of the
Kolmogorov spectrum throughout.

8. Dissipation: this crucial variable is computed locally with equation (9). With a Kolmogorov constant of Ko = 1.6, one has

2 3/2
¢, = 71:(3 Ko) =085, (123a)

which is the value employed by Xiong.

9. Nonlocality. The nonlocal nature of the model is wholly represented by the third-order moments which are treated as
discussed in (3) above.

10. Mixing length and OV. The author employs the relation [ = ¢; H,. The extent of OV is found to be d = 1.4, which, forc, = 1,
%, yields values larger than the upper limit d/H » < 0.2 arrived at by Stothers & Chin (1991). The use of a nonlocal model for € would
free the problem from the adjustable parameter ¢, .

11. The model has been applied to massive stars by Xiong (1985a, b, 1986) and to the Sun by Unno et al. (1985) and Unno &
Kondo (1989).

14. CONCLUSIONS

Zahn (1991) has lamented that astrophysicists neglect to confront their problems with those of colleagues who work in turbulence
in other disciplines and who are often decades ahead. The advice, which we heeded before it was suggested, implicitly recognizes that
geophysical turbulence has been treated for years with models that are considerably more complete than those used in stellar
structure calculations. Today, stellar structure modelers have few alternatives: local models a la MLT and the not-yet-ready
numerical simulations (LES, large eddy simulations).

If we plan to learn how other disciplines have advanced in the modeling of turbulence, the first thing to realize is that the choice
between the two above alternatives overlooks entirely an important intermediate step that has played and continues to play, a
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major role in most turbulent studies, namely the second-order-closure model (SOC) based on the Reynolds stress approach. In fact,
historically the development of turbulence modeling has passed through the following three phases:

Phen. Relations - SOC — LES . (124)

W hat is missing in stellar turbulence is Phase 2, the use of SOC models based on the Reynolds splitting of the type discussed in this
paper.

Jumping from phase 1 to phase 3 is neither presently feasible nor advisable. It is not feasible because the crucial ingredient in any
LES code is the SGS, the sub-grid scale model to treat the unresolved scales, which is not yet available for physical situations in
which convection, rather than shear, dominates. In fact, since a reliable SGS model will eventually result from an analysis similar to
the one used in the SOC treatment presented in this paper, the SOC model is indispensable. It would not be advisable to skip the
second phase because LES cannot be expected to be hooked up any time soon to already complex stellar structure codes. This last
problem (which is perhaps only technical) mirrors again very closely what has occurred in the treatment of convective turbulence in
the atmosphere. As we said earlier, SOC models have been in use since the early 70s. The appearance of LES dates back to the last
10 years and, as of today, there are four operational LES codes in existence for atmospheric turbulence. However, none of them has
yet been linked to a global circulation model (the equivalent of a stellar structure code) essentially because of the time requirements
involved. Rather, the four LES codes, viewed as experimental tools and thus run very parsimoniously, are used to generate results to
improve the description of those difficult terms (e.g., third-order moments, pressure-velocity correlations, etc.) that the SOC
approach must model.

It therefore seems to us that stellar structure calculations ought to enter phase 2, in which one abandons the phenomenological
relations that have exhausted their fruitfulness and substitutes them with the SOC models. The improvement in the quality of
turbulence modeling would be substantial while the added numerical complexity to the stellar code is manageable. In the meantime, one
should use the mathematical and physical structure of the SOC to generate a reliable SGS model to be used in the LES codes
presently available (Cattaneo et al. 1991; Stein and Nordlund 1989, Chan and Sofia 1989, Hurlburt, Toomre, & Massaguer 1984;
Hossain and Mullan 1991; Chan and Gigas, 1992), so as to render them applicable to the very high Reynolds number and very low
Prandtl number that characterize stellar interiors.

It is a pleasure to thank Prof. W. Unno, Prof. D. R. Xiong, Dr. R. Stothers, Mr. O. Schilling and Z. Wu for their careful reading of
the manuscript and Drs. K. L. Chan, I. Mazzitelli, F. Minotti, and C. Ronchi for several useful discussions.

APPENDIX A

DIMENSIONLESS FUNCTIONS jy’s AND CONSTANTS
1. The following equations are taken from (Shih & Shabbir 1992).

9y, = 6r2 — 10 — Bs(r> — )" 1[18(r* 4+ rb + r¥(7 — 15r%) + 3611 — 10] , (A1)
9(r? — Vily, = r*(31 + 14) — BII + 1) — Zr* — Bs[r¥ (1211 + 20) + 1081Irb + 10811 — 2111 — 5 — 15r%1 + 3ID)], (A2)
y3= —1+ 3B5(r — )7 1(12rb — 5% + 1211 — 1), (A3)
va= —3Bs,  6llys =T+ Bs(3611 — 10), (A4)
where
bijzﬁ—geai,, =2 =uu, (A5)
12 = 0u0u, (%) . rb=(0°¢7) "0u;0u;b; . (A9)

Using data from a buoyant plume experiment, Shih & Shabbir (1992) have determined that the value of B is approximately 0.6
which would correspond to ¢; = 1 — 5 = 0.4, a value close to 0.3 suggested in Paper 1, equation (44d). In the same work, the
authors have also shown that y, is almost constant (~0.42), while y, 3 4 s are all negative, with values ranging as follows:
191 < |y,] <282, 0.28 < |y5] < 0.7, 081 < [y4] <276, 095 < |y51 < 3.15. (A7)
2. The function f’s (Shih & Shabbir 1992):
Bs(611 — 10r% — 361Irb) = — (1211 + T)r?, .= —T/611 + Bs(5/311 — 1), —Bo=PBs+ B (A8)
3. Theinvariants I1, I11, and the function F:

—8e2 Il =by;by, 24 =b;byby, F=1+91+271I. (A10)
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4. Thec’s:

ck=c,+1—F¥2, (A1)
ca =1+ 622F31 — F)** (A12)

As for the other ¢’s, we suggest the values discussed in Paper 1. Furthermore,
croci-t, (A13)
fi=15. (A14)

APPENDIX B

THE TURBULENT VISCOSITIES (DIFFUSIVITIES)

Each of the diffusivities 4, ..., F,, has the form exhibited in equations (71)—(76). Furthermore, each 4, ,, 4,,, ..., Fy;, F), has the
form

Adyy = Ago+ Agpr X + Agg X% + A3 X3, (BD)
AAi; = Ajpo+ A X + Ay X% + Agpy X (B2)

The only exception is F,; which has an additional x*. Since equations (71)—(76) arise from the inversion of a matrix, there is a
denominator A whose structure is

A=Ag+Ax+A,x% +A;x3, (B3)
where
A, =127107, A= —47110°, A, =286 10°, Ay =—46. (B4)
The dimensionless function x is defined as
x = gufr® = (g/H )V ~ Voo)t* , (BS)
with 7 given by equation (51) and where we have used
cg=8, co=4, ¢ =%, =0, c=1. (B6)

We have obtained the following numerical values (E + 04 stands for 10%, etc.):

Ayjo= —15838E+06, Ay, =28365E+04, Ay ,=—6912, A;3=0,
Ajo= —13726E+05, A, =406.19, A, =0, A;,3=0,

Asio=0, Ay = —13924E+05, Ay, =2457T6E+03, Ay ,= —576,
Ayyo= —T9189E+05, Ay = 1.3926E+04, Ay, = —3072, Ay, =0,
Ayjo= —68631E+04, Ay, =20309, Az, =0, Ay3=0,

Aszo= —20589E+04,  Asyy =60928, Ay =0,  Asps =0,

Ago=0, Ay, =51200E+03, Ay,=—-768, A43=0,

Auzo=0, Ay =25600, Agy=—384, Ay =0,

Biio= —2.1299D+05, By, =38229E+03, By,=—9216, B,;;;=0,
Bi,o= —1.8350E+04, By, =53248, B;,,=0, B,,,=0,

Byo= —22128E+06, By, = 6.3283E4+04, B, ,=—15872, B,;=0,
Byso = —1LI0S9E+05,  B,,; =20173E+03, B,,, = —4.608, B,,=0,
Byjo= —9.1750E+03,  Bay, =26624, By, =0, By,=0,

Bayo = —27525E+03,  Bay =79872, Bayyy =0, Biy,s=0,

Bijo =8.1920E+04, By, = —21163E+03, B,,=0, B,;=0,

Buyo = 40960E+03, By, = —10581, By =0, By, =0.
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Ci10=0, Cyyy = —1.5838E+05, Cy1, =4608, Ci13=0,
Ci0 = —1.2670E+06 , Ci,s = 14336E+04, Ciy = —30.72, Ci3 =0,
Cy10=0, Cy1 =0, C,y, = —1.3824E+ 04, C,3 =384,
Cya0=0, C,y,1 = —79189E+04, C,yy =2048, Cy =0,
Ci310= —0335E+05, Ci3y; =7.1680E+03, Ciyy, = —1536, Cy13=0,
C350 = —1.9005E+05, Cy, =21504E+03, Ci,, = —4.608 , Ci3,=0,
Cs10=0, Ci11=0, Cs12 =512, C413=0,
Ci20=0, Cs21=0, Ca22 =256, Cy23=0.
D,;o = —1.5838E+06, D1y =26749E+04 , Dy, = —8448, D=0,
Do = —1.5838E+05, D,,, =67243, D, =0, Di;3=0,
D;,,=0, D,y, = —81920E+04, D,, = 38827, D,,=0,
D,y =0, D,,, = —1.3995E+04, D,,,=6144, D,,3;,=0,
D30 = —79189E404 , D5 =336.21, D3, =0, D;3=0,
Djyy0 = —23757E+04 D;,, = 10086, D;,, =0, D;,3=0,
D,1o=0, D4y = —4.0960E 404, D4y, = 1.5061E4+03, D,3=—576,
Dyyo = —79189E 405, D4,y =27369E+04 , Dy,, = —103.68, D4y =0.
E{o=—19661E+05, E,,, =34543E+03, Ei i, = -9216, E{3=0,
Eiyo= —17913E+04, Ei,; =6144, Ei,, =0, Ei,;=0,
Eyi0 = —1.3107E+06, E, , =3.3860E+04, E,,=-768, E,;=0,
E,,, = —6.5536E+04 , E,,, =573.44, E,,, =0, E,)3=0,
Eyjo= —89566E+03,  Ey, =3072, Es,=0, Ey,=0,
Ej0 = —2.6870E+03, E;y =9.216, E;, =0, Ey =0,
E o= —6.5536E+05, E iy =23074E+04 , E,, = —92.16, E i3=0,
E 0= —32768E+04 , E ., = 1L1537E4+03, E4py; = —4.608 , Es 3 =0.
Fio=0, Fy,=0, Fy,=—59392E+04, F,,=1728,
Fi,0=0, Fy,y = —47514E+05, Fi,, =53760E+03, Fi,3=—11.52,
Fy6=0, F,,, =90, F,,=0, F,,3= —51840E+03, F,4=1440,
Fy0=0, F, =0, Fi,, = —29696E+04 , F,,3 =768,
F3,0=0, Fiy, = —23757TE+05, Fi,, =2.6880E+03, Fy 3= -576,
Fy0=—47514E+06, Fi,, = 1.0523E405, Fi,, = —267.52, Fi,,=0,
Fa10=0, Fay =0, Fg, =0, Fa3=192.
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